On Clustering on Graphs with Multiple Edge Types
نویسندگان
چکیده
We study clustering on graphs with multiple edge types. Our main motivation is that similarities between objects can be measured in many different metrics. For instance similarity between two papers can be based on common authors, where they are published, keyword similarity, citations, etc. As such, graphs with multiple edges is a more accurate model to describe similarities between objects. Each edge/metric provides only partial information about the data; recovering full information requires aggregation of all the similarity metrics. Clustering becomes much more challenging in this context, since in addition to the difficulties of the traditional clustering problem, we have to deal with a space of clusterings. We generalize the concept of clustering in single-edge graphs to multi-edged graphs and investigate problems such as: Can we find a clustering that remains good, even if we change the relative weights of metrics? How can we describe the space of clusterings efficiently? Can we find unexpected clusterings (a good clustering that is distant from all given clusterings)? If given the groundtruth clustering, can we recover how the weights for edge types were aggregated?
منابع مشابه
CERTAIN TYPES OF EDGE m-POLAR FUZZY GRAPHS
In this research paper, we present a novel frame work for handling $m$-polar information by combining the theory of $m-$polar fuzzy sets with graphs. We introduce certain types of edge regular $m-$polar fuzzy graphs and edge irregular $m-$polar fuzzy graphs. We describe some useful properties of edge regular, strongly edge irregular and strongly edge totally irregular $m-$polar fuzzy graphs. W...
متن کاملLatent Clustering on Graphs with Multiple Edge Types
We study clustering on graphs with multiple edge types. Our main motivation is that similarities between objects can be measured in many different metrics, and so allowing graphs with multivariate edges significantly increases modeling power. In this context the clustering problem becomes more challenging. Each edge/metric provides only partial information about the data; recovering full inform...
متن کاملComputing an Aggregate Edge-Weight Function for Clustering Graphs with Multiple Edge Types
We investigate the community detection problem on graphs in the existence of multiple edge types. Our main motivation is that similarity between objects can be defined by many different metrics and aggregation of these metrics into a single one poses several important challenges, such as recovering this aggregation function from ground-truth, investigating the space of different clusterings, et...
متن کاملClustering Attributed Multi-graphs with Information Ranking
Attributed multi-graphs are data structures to model realworld networks of objects which have rich properties/attributes and they are connected by multiple types of edges. Clustering attributed multigraphs has several real-world applications, such as recommendation systems and targeted advertisement. In this paper, we propose an efficient method for Clustering Attributed Multi-graphs with Infor...
متن کاملSome results on vertex-edge Wiener polynomials and indices of graphs
The vertex-edge Wiener polynomials of a simple connected graph are defined based on the distances between vertices and edges of that graph. The first derivative of these polynomials at one are called the vertex-edge Wiener indices. In this paper, we express some basic properties of the first and second vertex-edge Wiener polynomials of simple connected graphs and compare the first and second ve...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Internet Mathematics
دوره 9 شماره
صفحات -
تاریخ انتشار 2013